A degree condition implying that every matching is contained in a hamiltonian cycle
نویسندگان
چکیده
We give a degree sum condition for three independent vertices under which every matching of a graph lies in a hamiltonian cycle. We can show that the bound for the degree sum is almost best possible. Résumé Nous obtenons une condition portant sur la somme des degrés de trois sommets indépendants pour que tout couplage d’un graphe soit contenu dans un cycle hamiltonien. Nous prouvons que la borne obtenue sur la somme des degrés est presque la meilleure possible.
منابع مشابه
Bipartite graphs with every matching in a cycle
We give sufficient Ore-type conditions for a balanced bipartite graph to contain every matching in a hamiltonian cycle or a cycle not necessarily hamiltonian. Moreover, for the hamiltonian case we prove that the condition is almost best possible. © 2006 Elsevier B.V. All rights reserved.
متن کاملt-Pancyclic Arcs in Tournaments
Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...
متن کاملMinimum Vertex Degree Condition for Tight Hamiltonian Cycles in 3-uniform Hypergraphs
We show that every 3-uniform hypergraph with n vertices and minimum vertex degree at least p5{9` op1qq ` n 2 ̆ contains a tight Hamiltonian cycle. Known lower bound constructions show that this degree condition is asymptotically optimal. §
متن کاملDirac's minimum degree condition restricted to claws
Let G be a graph on n t> 3 vertices. Dirac's minimum degree condition is the condition that all vertices of G have degree at least in. This is a well-known sufficient condition for the existence of a Hamilton cycle in G. We give related sufficiency conditions for the existence of a Hamilton cycle or a perfect matching involving a restriction of Dirac's minimum degree condition to certain subset...
متن کاملOn the Parallel Complexity of Hamiltonian Cycle and Matching Problem on Dense Graphs
Dirac's classical theorem asserts that, if every vertex of a graph G on n vertices has degree at least n2 then G has a Hamiltonian cycle. We give a fast parallel algorithm on a CREW PRAM to nd a Hamiltonian cycle in such graphs. Our algorithm uses a linear number of processors and is optimal up to a polylogarithmic factor. The algorithm works in O(log4 n) parallel time and uses linear number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009